New Bone Formation in the Maxillary Sinus Using Only Absorbable Gelatin Sponge

New Bone  Formation in the  Maxillary Sinus  Using Only  Absorbable Gelatin Sponge

 

Dong-Seok Sohn, DDS, PhD,* Jee-Won Moon, DDS,† Kyung-Nam Moon, DDS, MSD,‡ Sang-Choon Cho, DDS,§ and Pil-Seoung Kang, DDS!

 

Purpose:   The purpose of the present study  was  to evaluate the predictability of new  bone  formation in the maxillary sinus  using  only  absorbable gelatin as the graft material.

Patients and Methods:  Seven patients (9 sinus augmentations) were consecutively treated with  sinus floor elevation by the  lateral  window approach. The lateral  bony  window was  created using  a piezo- electric device and  the  schneiderian membrane was  elevated to make  a new  compartment. After 18 resorbable blast media  surfaced dental  implants were simultaneously placed, absorbable gelatin sponges were loosely  inserted to support the  sinus  membrane over  the  implant  apex  and the  bony  portion  of lateral  window was  repositioned to seal  the lateral  window.

Results:   After  uncovering  the   implants  an  average  of  6  months   after   placement,  new   bone consolidation in the maxillary sinus  was  observed on radiographs without bone  graft. Two implants were removed due  to failed  osseointegration on  uncovering. Failures  were caused by  insufficient initial  stability.

Conclusion:   This study suggests that placement of a dental  implant  in the maxillary sinus with  a gelatin sponge can be a predictable procedure for sinus  augmentation.

© 2010 American Association of Oral and Maxillofacial Surgeons

J Oral Maxillofac  Surg 68:1327-1333, 2010

 

The  widespread use  of dental  implants for replace- ment  of missing  teeth  has  led  to  complex surgical procedures to increase the amount  of available bone. Placement of dental  implants on the edentulous  pos- terior  maxilla could  present difficulties due to a deficient  posterior alveolar  ridge,  unfavorable bone  qual- ity,  and  increased  pneumatization of  the  maxillary sinus.1,2  Increased implant  failure  rates  in the  poste- rior maxilla are related to insufficient residual height and  poor  bone  quality.3,4  Such  problems have  been overcome by increasing the alveolar  height  with  max- illary sinus augmentation.5,6 The lateral window ap- proach  is a commonly used  technique for maxillary sinus augmentation, especially when the initial  alveo- lar  bone  height  cannot  ensure the  primary stability of simultaneous placement of implants.5-7  Numerous studies  have documented the technical details  for the lateral  window method, and  these  procedures have shown  clinical predictability.6-9  The sinus  augmenta- tion procedure is usually accomplished by creating a lateral   bony  window  followed by  elevation of  the schneiderian membrane. The space  created between the maxillary alveolar  process and the elevated schneiderian  membrane is  typically filled  with   au- tografts,  allografts, xenografts, alloplasts, or combina- tions of different graft materials to maintain space  for new  bone  formation.6,10-15  Several  studies   have  re- ported  that factors  such  as the volume  of graft material, the kinds of bone graft, and the amount  of autog- enous bone affect the amount of new bone formation,

and  most  of these  studies  have  shown  a correlation between the success of the bone graft and the success of dental  implants.6,10-15

Elevating  the  maxillary sinus  membrane and graft- ing  with  bone  substitutes has  become routine treat- ment  over  the  past  40 years,  and some  studies  have reported successful bone formation  and osseointegra- tion in cases of performing sinus membrane elevation without bone  grafts.16-19

The  aim  of  this  study   was   to  verify   new   bone formation  by radiologic results  by application of only an  absorbable gelatin  sponge  (Cutanplast; Mascia Brunelli  Spa, Milano,  Italy)  in the space  between the elevated schneiderian membrane and simultaneously placed implants.

 

Patients and Methods

 

PATIENT SELECTION

The present study  population consisted of 7 con- secutive patients, 6 men and 1 woman, 40 to 75 years of age  (mean  age,  56.1  years). All patients were in- formed  about  the treatment procedure and provided written consent for participation, and this study  was approved by  the  institutional review  board  of  the Catholic  Medical  Center  of Daegu.  The patients pre- sented  with  a partially or  fully  edentulous atrophic maxilla with  sinus pneumatization. Preoperative ex- aminations with  panoramic views  and  dental  cone- beam  computed tomographic scans  (Combi,   Point- nix,   Seoul,   Korea;  or  Implagraphy, Vatec,   Kyungi, Korea) were performed. Available bone volume, bone quality, and any existing sinus  pathology were evalu- ated  on  these  radiographs. The  bone  height  of the remaining alveolar  ridge  was 1.5 to 7.0 mm (average, approximately 5.0  mm;  Table  1).  Patients  were con- secutively treated with  sinus  floor  elevation by  the lateral  window approach.

Patients  who  had  previous failed  sinus  augmenta- tions,  who  exhibited  pathologic findings   or  had  a history  of maxillary sinus  diseases or operations, or whose  medical  conditions might   increase  surgical risks  of the research protocol were excluded.

 

SURGICAL PROCEDURES

Prophylactic oral antibiotics (cefditoren pivoxil 300 mg  3  times/day;   Meiact,   Boryung  Pharmacy, Seoul, Korea)  were used  routinely, beginning 1 day  before the procedure and continuing for 7 days. Surgery  was performed under  local  anesthesia through maxillary block   anesthesia  using   2%  lidocaine  that  includes 1:100,000 epinephrine. Flomoxef  sodium  (Flumarin; Ildong  Pharmaceutical Co, Seoul,  Korea)  500  mg in- travenously was  administered 1 hour  before  surgery. Maxillary sinus floor elevation by the lateral  approach was  completed in  all  participants. The  approach to the  lateral  wall  of the  maxillary sinus  was  followed after the elevation of a mucoperiosteal flap according to surgical needs. A piezoelectric saw (S-Saw; Bukboo Dental Co, Daegu,  Korea),  connected to a piezoelec- tric device (Surgybone; Silfradent  Srl, Sofia, Italy), was used  with  copious saline  irrigation to create the  lat- eral  window of the maxillary sinus  (Fig 1).  The ante- rior vertical osteotomy was  made  2 mm distal  to the

FIGURE 1. A  piezoelectric  saw   (S-Saw;  Bukboo  Dental  Co, Daegu, Korea),  connected to a piezoelectric device  (Surgybone; Silfradent Srl, Sofia, Italy), was used to create the lateral window of the maxillary sinus in all cases  (patient 4)

FIGURE 2. After elevation  of the  schneiderian membrane and placement  of implants, an absorbable gelatin sponge (Cutanplast; Mascia  Brunelli Spa,  Viale Monza, Italy) 70  ! 50  ! 1 mm was divided  into 3 pieces  and  inserted  into spaces anterior  and  poste- rior to the implants and below the elevated  schneiderian membrane (patient 6).

FIGURE 3. The lateral  bony  window  was  repositioned  without additional procedures (patient 6).

anterior vertical wall  of the  maxillary sinus  and  the distal  osteotomy was  made  approximately 20  mm away  from the anterior vertical osteotomy. The height of the vertical osteotomy was  approximately 10 mm. The anterior and inferior  osteotomy line was  created perpendicular to  the  inside   of  the  maxillary  sinus lateral  wall,  and then  superior and posterior osteoto- mies perpendicular to the sinus wall were performed. This  design   of osteotomy facilitates the  precise  re- placement of the  bony  window as a barrier  over  an inserted gelatin sponge in  the  maxillary sinus.  The bony  window was  detached carefully to expose the sinus  membrane. The  schneiderian membrane was

carefully dissected from the  sinus  floor walls  with  a flat  blunt-edged instrument. Dissection of the  sinus membrane was  continued to  reach  the  medial   and posterior walls  of the  sinus  cavity.  After elevation of the  schneiderian  membrane and  placement of  im- plants  (SybronPRO XRT implants; Sybron Implant  So- lution,  Grendora,  CA), an absorbable gelatin sponge (70  ! 50  ! 1 mm;  Cutanplast) was  divided  into  3 pieces. The pieces were folded  and inserted into the new  compartment of the  maxillary sinus.  One piece of gelatin sponge was  placed anterior to the implant site,  1 posterior to the  site,  and 1 directly above  the implant  apex  to support the  membrane (Fig 2).  The bony portion  of the lateral  window was  repositioned to prevent soft tissue  ingrowth into  the  sinus  cavity and to promote new  bone  formation  from the lateral wall of the maxillary sinus (Fig 3). Flaps were sutured using interrupted mattress polytetrafluoroethylene su- tures   (Cytoplast;  Osteogenic  Biomedical,  Lubbock, TX) to achieve passive primary closure. Patients  were instructed not  to blow  their  nose  for 2 weeks after surgery and to cough  or sneeze with  an open mouth. Preoperative prophylactic antibiotic therapy was con- tinued   postoperatively for  7  days,  and  the  sutures were removed 14  days  postoperatively. After  sinus augmentation, postoperative panoramic radiographs and  cone-beam computed  tomographic scans  were taken  immediately after surgery. An average of 6 months was allowed for the implants to integrate. The implants were then  uncovered and panoramic radio- graphs  and dental  cone-beam computed tomographic scans  were obtained to  assess  new  bone  formation around  the implants. Implants  were loaded  with  pro- visionals   for  3  months   before   the  final  prostheses were delivered.

FIGURE 4. Postoperative cone-beam computed  tomographic scans revealed the sinus was filled with blood clots and voids under the elevated schneiderian membrane. A, Implant corresponding to the maxillary right second  molar. B, Implant corresponding to the maxillary right first molar.  C, Panoramic  computed  tomogram  (patient 6).

 

Results

Postoperative cone-beam computed  tomographic has reported similar or better success than of implants placed using a conventional protocol with  no grafting scans  revealed that  the  sinus  was  filled  with  blood procedure.6 However, Lundgren  et al16 reported succlots and voids under  the elevated schneiderian mem- brane  (Fig 4).  No adverse events  were recorded dur- ing the healing period  in any patient. There  were no cessful  new  bone  formation  and  osseointegration of implants in cases  of sinus  membrane elevation with- out bone  grafts,  with  radiographic and in vitro histo 17 signs of infection. Two implants failed before  loading logic  results. Palma  et  alcompared the  histologic due to insufficient initial  stability when placed into an extraction socket. The  schneiderian membrane was perforated in 1 case.  The absorbable gelatin sponge was  used  for managing these  perforations. After un- covering the  implants, on  average 6  months   after placement, new  bone consolidation was observed on radiographs and  cone-beam computed tomographic scans  (Fig 5). The newly formed  maxillary sinus floor was  observed around  the  implant  apex  in  all  cases including the failed  implant  sites.  No apparent differ- ences  were observable on imaging of the  augmenta- tion  with   nonperforation or  perforation sites.   The patients maintained stable  implant  prostheses during their  final prostheses (Fig 6).

 

 

Discussion

 

One long-term  study  on the clinical success of im- plants placed into the augmented maxillary sinus with variable  bone grafts, regardless of graft materials used, results  of sinus membrane elevation and simultaneous placement of implants with  and  without adjunctive autogenous  bone   grafts   in   primates.  The   results showed no differences between membrane-elevated and  grafted   sites   with   regard   to  implant   stability, bone-to-implant contacts, and  bone  area  within and outside  implant   threads  histologically  in   animals.

Nedir  et  al18   reported that  elevation  of  the  sinus membrane alone  without the  addition  of bone  graft- ing  material can  lead  to bone  formation  beyond the original limits of the sinus floor from osteotome- mediated sinus  floor elevation. Sohn et al19  reported favorable  new  bone  formation  in the  maxillary sinus without bone  graft and clinical implant  success with in vivo histologic evidence for the first time.

FIGURE 5. New bone  consolidation was observed on computed  tomographic scans.  The former sinus floor disappeared and  newly formed sinus floor and  new bone  formation were observed. A, Implant corresponding to the maxillary right second  molar. B, Implant corresponding to the maxillary right first molar.  C, Panoramic  computed  tomogram  (patient 6).

The absorbable gelatin sponge inserted loosely  un- der  the  elevated sinus  membrane acted  as  a  space maintainer for new  bone  formation  in the  maxillary sinus  as an alternative to bone  filler in this study.  All cases  showed new  bone  formation  in the  new  compartment of  the  maxillary sinus;  even  the  elevated sinus   membrane  showed  repneumatization  around the  implant   apex. In cases  of bone  grafts  into  the maxillary sinus,  bone  graft materials have  the role of filler, resulting in space  in the sinus. However, grafted bone  volumes  also  adapt  considerably in shape  and volume   due   to  repneumatization  of  the   maxillary sinuses, with  a resorption rate  of 0.4% to 54%.20-23 In the  present study,  2 implants failed  during  the uncovering procedure due  to insufficient osseointe- gration. The  failed  implants could   not  be  inserted with   sufficient  primary  stability  in  the   extraction socket, and the residual bone height  was shorter  than 2 mm in 1 of the  sites.  Achievement of primary sta- bility  depends on adequate preparation of the  bone site to receive the implant  and demands strict  adher- ence  to surgical protocols.24  Implants  with  deficient initial  stability are  susceptible to micromotion at the bone-to-implant interface, which may affect the bone- healing process and result  in fibrous encapsulation.25

Previous  studies  have  shown  that  implants with surface   treatment exhibit  greater  bone-to-implant

FIGURE 6. Panoramic  radiograph shows the augmented right maxillary sinus and  fixed bridges  in situ.

contact mainly  in the  early  stages  of osseointegra- tion  and  in  areas  of low-quality bone.26,27   Sybron- PRO XRT implants with  resorbable blast media  sur- faces  were placed in the  present study.  Piattelli  et al28  reported that  the  resorbable blast  media  sur- face   could   be  considered  more   osteoconductive than  a machined surface. The study,  with  scanning electron microscopy and electron spectroscopy for clinical analysis, showed that implant  surface  treat- ment  can  improve in  vitro  cellular  adhesion and proliferation.27  However, surface  treatment pro- cesses can leave  the processing material embedded in the implant  surface  as residual contaminants dur- ing beading or grit blasting.29 Such a problem could be avoided  by the use of calcium phosphate media. Although  the  residual particles existed, they  could be absorbed or attached to surrounding bone.28 The barrier  membrane between graft materials and the  overlying  soft  tissue   is  necessary  to  prevent growth of fibrous connective tissue  in the augmented space.30,31  The  lateral   bony  window was  replaced after  augmentation of the  maxillary sinus  and  simul- taneous  placement of implants in this study.  The re- placeable bony  window made  by  the  piezoelectric saw  could  be  precisely repositioned because of the tilted  osteotomy into the  sinus,  highly  controlled os- teotomy, and  minimal  bone  loss  during  osteotomy. Lundgren  et al16 used an oscillating saw to create the lateral  window as  a barrier  for sinus  augmentation. The application of a conventional oscillating saw  in creating a lateral  bony window is irritating to patients because of the  loud  noise  during  surgery. Moreover, access to the oral cavity  may be limited. Hence, use of a  piezoelectric device is  recommended to  create a lateral  bony  window to obtain  direct  visibility over whole osteotomies, highly  precise bone cut by micrometric, and linear  vibrations.19,32-36  The precisely created bony window prevents the replaceable bony win- dow  from dropping into the maxillary sinus cavity.19,34

Whether or not bone  grafting  is performed in the maxillary sinus,  the replaceable bony window acts as a  homologous  barrier   over  the  new   compartment under  the elevated maxillary sinus.19 Lundgren  et al16 reported that there  are several  advantages to using  a replaceable bone window, according to the principle of guided tissue  regeneration. Sohn  et  al19   demon- strated  that  there  are  no clinical differences in new bone  formation  in  the  maxillary sinus  between the group  using  nonresorbable membrane and the group using  replaceable bony  window to  seal  the  lateral window, according to histologic data in humans. However, a homologous bony  window is free  from viral  cross-contamination of animal  or human  origin and saves the surgical cost of purchasing barrier  mem- branes. Homologous bony windows not only prevent soft  invasion   into  the  grafted   site  but  also  act  as osteoinductive/osteoconductive substrates for new bone  formation  in the  sinus,  accelerating new  bone formation  in the grafted/nongrafted sinus.

In conclusion, elevation of  the  sinus  membrane, simultaneous placement of implants, and insertion of gelatin  sponges  demonstrate new   bone   formation through clinical and  radiographic evaluations. New bone  formation  was  verified  by  stabilization of the elevated sinus  membrane from  the  tenting effect  of placement of dental  implants and absorbable gelatin sponge without any  bone  graft  material. This  study shows   that  there   is  great   potential for  new   bone formation  in the  maxillary sinus  without the  use  of additional bone  grafts.  It is suggested that  long-term follow-up  often  is  required for  confirmation of the stability of this procedure.

Acknowledgment

 

The authors  thank  Dr Paul Maupin  for his valuable assistance in editing this article.

 

Leave a Reply

Your email address will not be published. Required fields are marked *